Iwasawa Main Conjecture for the Carlitz cyclotomic extension and applications
Autor: | Anglès, Bruno, Bandini, Andrea, Bars, Francesc, Longhi, Ignazio |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove an Iwasawa Main Conjecture for the class group of the $\mathfrak{p}$-cyclotomic extension $\mathcal{F}$ of the function field $\mathbb{F}_q(\theta)$ ($\mathfrak{p}$ is a prime of $\mathbb{F}_q[\theta]\,$), showing that its Fitting ideal is generated by a Stickelberger element. We use this and a link between the Stickelberger element and a $\mathfrak{p}$-adic $L$-function to prove a close analog of the Ferrero-Washington theorem for $\mathcal{F}$ and to provide informations on the $\mathfrak{p}$-adic valuations of the Bernoulli-Goss numbers $\beta(j)$ (i.e., on the values of the Goss $\zeta$-function at negative integers). Comment: Section 3 entirely rewritten |
Databáze: | arXiv |
Externí odkaz: |