On magnetic equilibria in barotropic stars

Autor: Armaza, C., Reisenegger, A., Valdivia, J. A.
Rok vydání: 2014
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1088/0004-637X/802/2/121
Popis: Upper main sequence stars, white dwarfs and neutron stars are known to possess stable, large-scale magnetic fields. Numerical works have confirmed that stable MHD equilibria can exist in non-barotropic, stably stratified stars. On the other hand, it is unclear whether stable equilibria are possible in barotropic stars, although the existing evidence suggests that they are all unstable. This work aims to construct barotropic equilibria in order to study their properties, as a first step to test their stability. We have assumed that the star is a perfectly conducting, axially symmetric fluid, allowing for both poloidal and toroidal components of the magnetic field. In addition, we made the astrophysically justified assumption that the magnetic force has a negligible influence on the fluid structure, in which case the equilibrium is governed by the Grad-Shafranov equation, involving two arbitrary functions of the poloidal flux. We built a numerical code to solve this equation, allowing for an arbitrary prescription for these functions. Taking particularly simple, but physically reasonable choices for these functions with a couple of adjustable parameters, all of the equilibria found present only a small ($\lesssim 10\%{}$) fraction of the magnetic energy stored in the toroidal component, confirming previous results. We developed an analytical model in order to study in more detail the behavior of the magnetic energy over the full range of parameters. The model confirms that the toroidal fraction of the energy and the ratio of toroidal to poloidal flux are bounded from above for the whole range of parameters.
Comment: 12 pages, 5 figures. Accepted for publication in ApJ
Databáze: arXiv