Geometry of surfaces associated to grassmannian sigma models

Autor: Delisle, Laurent, Hussin, Véronique, Zakrzewski, Wojtek J.
Rok vydání: 2014
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1088/1742-6596/597/1/012029
Popis: We investigate the geometric characteristics of constant gaussian curvature surfaces obtained from solutions of the $G(m,n)$ sigma model. Most of these solutions are related to the Veronese sequence. We show that we can distinguish surfaces with the same gaussian curvature using additional quantities like the topological charge and the mean curvature. The cases of $G(1,n)=\mathbb{C}P^{n-1}$ and $G(2,n)$ are used to illustrate these characteristics.
Comment: 10 pages
Databáze: arXiv