Geometry of surfaces associated to grassmannian sigma models
Autor: | Delisle, Laurent, Hussin, Véronique, Zakrzewski, Wojtek J. |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1088/1742-6596/597/1/012029 |
Popis: | We investigate the geometric characteristics of constant gaussian curvature surfaces obtained from solutions of the $G(m,n)$ sigma model. Most of these solutions are related to the Veronese sequence. We show that we can distinguish surfaces with the same gaussian curvature using additional quantities like the topological charge and the mean curvature. The cases of $G(1,n)=\mathbb{C}P^{n-1}$ and $G(2,n)$ are used to illustrate these characteristics. Comment: 10 pages |
Databáze: | arXiv |
Externí odkaz: |