Linking 1D Stellar Evolution to 3D Hydrodynamical Simulations

Autor: Cristini, Andrea, Hirschi, Raphael, Georgy, Cyril, Meakin, Casey, Arnett, David, Viallet, Maxime
Rok vydání: 2014
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1017/S1743921314006371
Popis: In this contribution we present initial results of a study on convective boundary mixing (CBM) in massive stellar models using the GENEVA stellar evolution code. Before undertaking costly 3D hydrodynamic simulations, it is important to study the general properties of convective boundaries, such as the: composition jump; pressure gradient; and `stiffness'. Models for a 15Mo star were computed. We found that for convective shells above the core, the lower (in radius or mass) boundaries are `stiffer' according to the bulk Richardson number than the relative upper (Schwarzschild) boundaries. Thus, we expect reduced CBM at the lower boundaries in comparison to the upper. This has implications on flame front propagation and the onset of novae.
Comment: 2 pages, 1 figure. To appear in proceedings of the IAU Symposium 307: New Windows on Massive Stars: Asteroseismology, Interferometry and Spectropolarimetry
Databáze: arXiv