Variants of the Kakeya problem over an algebraically closed field

Autor: Slavov, Kaloyan
Rok vydání: 2014
Předmět:
Zdroj: Archiv der Mathematik: Volume 103, Issue 3 (2014), Page 267-277
Druh dokumentu: Working Paper
DOI: 10.1007/s00013-014-0685-6
Popis: First, we study constructible subsets of $\A^n_k$ which contain a line in any direction. We classify the smallest such subsets in $\A^3$ of the type $R\cup\{g\neq 0\},$ where $g\in k[x_1,...,x_n]$ is irreducible of degree $d$, and $R\subset V(g)$ is closed. Next, we study subvarieties $X\subset\A^N$ for which the set of directions of lines contined in $X$ has the maximal possible dimension. These are variants of the Kakeya problem in an algebraic geometry context.
Comment: Final version, comments of the referee incorporated
Databáze: arXiv