A Note on Rectangle Covering with Congruent Disks
Autor: | Tron, Emanuele |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this note we prove that, if $S_n$ is the greatest area of a rectangle which can be covered with $n$ unit disks, then $2\leq S_n/n<3 \sqrt{3}/2$, and these are the best constants; moreover, for $\Delta(n):=(3\sqrt{3}/2)n-S_n$, we have $0.727384<\liminf\Delta(n)/\sqrt{n}<2.121321$ and $0.727384<\limsup\Delta(n)/\sqrt{n}<4.165064$. Comment: 8 pages, 3 figures, some corrections made in version 2 |
Databáze: | arXiv |
Externí odkaz: |