Uniformly defining $p$-henselian valuations
Autor: | Jahnke, Franziska, Koenigsmann, Jochen |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Admitting a non-trivial $p$-henselian valuation is a weaker assumption on a field than admitting a non-trivial henselian valuation. Unlike henselianity, $p$-henselianity is an elementary property in the language of rings. We are interested in the question when a field admits a non-trivial 0-definable $p$-henselian valuation (in the language of rings). We give a classification of elementary classes of fields in which the canonical $p$-henselian valuation is uniformly 0-definable. We then apply this to show that there is a definable valuation inducing the ($t$-)henselian topology on any ($t$-)henselian field which is neither separably nor real closed. Comment: 13 pages, revised version |
Databáze: | arXiv |
Externí odkaz: |