On the Range of Equilibria Utilities of a Repeated Epidemic Dissemination Game with a Mediator
Autor: | Vilaca, Xavier, Rodrigues, Luis |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We consider eager-push epidemic dissemination in a complete graph. Time is divided into synchronous stages. In each stage, a source disseminates $\nu$ events. Each event is sent by the source, and forwarded by each node upon its first reception, to $f$ nodes selected uniformly at random, where $f$ is the fanout. We use Game Theory to study the range of $f$ for which equilibria strategies exist, assuming that players are either rational or obedient to the protocol, and that they do not collude. We model interactions as an infinitely repeated game. We devise a monitoring mechanism that extends the repeated game with communication rounds used for exchanging monitoring information, and define strategies for this extended game. We assume the existence of a trusted mediator, that players are computationally bounded such that they cannot break the cryptographic primitives used in our mechanism, and that symmetric ciphering is cheap. Under these assumptions, we show that, if the size of the stream is sufficiently large and players attribute enough value to future utilities, then the defined strategies are Sequential Equilibria of the extended game for any value of $f$. Moreover, the utility provided to each player is arbitrarily close to that provided in the original game. This shows that we can persuade rational nodes to follow a dissemination protocol that uses any fanout, while arbitrarily minimising the relative overhead of monitoring. Comment: 14 pages, 2 algorithms, accepted in ICDCN'15, proofs of D4 and D5 improved, improved definition of Non-disclosure |
Databáze: | arXiv |
Externí odkaz: |