Autor: |
Guo, Wenbin, Revin, Danila, Vdovin, Evgeny |
Rok vydání: |
2014 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
DOI: |
10.1016/j.jalgebra.2015.04.003 |
Popis: |
Let $\pi$ be a set of primes. By H.Wielandt definition, {\it Sylow $\pi$-theorem} holds for a finite group $G$ if all maximal $\pi$-subgroups of $G$ are conjugate. In the paper, the following statement is proven. Assume that $\pi$ is a union of disjoint subsets $\sigma$ and $\tau$ and a finite group $G$ possesses a $\pi$-Hall subgroup which is a direct product of a $\sigma$-subgroup and a $\tau$-subgroup. Furthermore, assume that both the Sylow $\sigma$-theorem and $\tau$-theorem hold for $G$. Then the Sylow $\pi$-theorem holds for $G$. This result confirms a conjecture posed by H.\,Wielandt in~1959. |
Databáze: |
arXiv |
Externí odkaz: |
|