Distinguishing Chromatic Number of Random Cayley graphs

Autor: Balachandran, Niranjan, Padinhatteeri, Sajith
Rok vydání: 2014
Předmět:
Druh dokumentu: Working Paper
Popis: The \textit{Distinguishing Chromatic Number} of a graph $G$, denoted $\chi_D(G)$, was first defined in \cite{collins} as the minimum number of colors needed to properly color $G$ such that no non-trivial automorphism $\phi$ of the graph $G$ fixes each color class of $G$. In this paper, we consider random Cayley graphs $\Gamma(A,S)$ defined over certain abelian groups $A$ and show that with probability at least $1-n^{-\Omega(\log n)}$ we have, $\chi_D(\Gamma)\le\chi(\Gamma) + 1$.
Comment: 11 pages
Databáze: arXiv