The 3-Loop Non-Singlet Heavy Flavor Contributions and Anomalous Dimensions for the Structure Function $F_2(x,Q^2)$ and Transversity

Autor: Ablinger, J., Behring, A., Blümlein, J., De Freitas, A., Hasselhuhn, A., von Manteuffel, A., Round, M., Schneider, C., Wißbrock, F.
Rok vydání: 2014
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1016/j.nuclphysb.2014.07.010
Popis: We calculate the massive flavor non-singlet Wilson coefficient for the heavy flavor contributions to the structure function $F_2(x,Q^2)$ in the asymptotic region $Q^2 \gg m^2$ and the associated operator matrix element $A_{qq,Q}^{(3), \rm NS}(N)$ to 3-loop order in Quantum Chromodynamics at general values of the Mellin variable $N$. This matrix element is associated to the vector current and axial vector current for the even and the odd moments $N$, respectively. We also calculate the corresponding operator matrix elements for transversity, compute the contributions to the 3-loop anomalous dimensions to $O(N_F)$ and compare to results in the literature. The 3-loop matching of the flavor non-singlet distribution in the variable flavor number scheme is derived. All results can be expressed in terms of nested harmonic sums in $N$ space and harmonic polylogarithms in $x$-space. Numerical results are presented for the non-singlet charm quark contribution to $F_2(x,Q^2)$.
Comment: 82 pages, 3 style files, 33 Figures
Databáze: arXiv