The balanced tensor product of module categories

Autor: Douglas, Christopher L., Schommer-Pries, Christopher, Snyder, Noah
Rok vydání: 2014
Předmět:
Zdroj: Kyoto J. Math. 59, no. 1 (2019), 167-179
Druh dokumentu: Working Paper
DOI: 10.1215/21562261-2018-0006
Popis: The balanced tensor product M (x)_A N of two modules over an algebra A is the vector space corepresenting A-balanced bilinear maps out of the product M x N. The balanced tensor product M [x]_C N of two module categories over a monoidal linear category C is the linear category corepresenting C-balanced right-exact bilinear functors out of the product category M x N. We show that the balanced tensor product can be realized as a category of bimodule objects in C, provided the monoidal linear category is finite and rigid.
Comment: 19 pages; v3 is author-final version
Databáze: arXiv