Kernelization lower bound for Permutation Pattern Matching

Autor: Bliznets, Ivan, Cygan, Marek, Komosa, Pawel, Mach, Lukas
Rok vydání: 2014
Předmět:
Druh dokumentu: Working Paper
Popis: A permutation $\pi$ contains a permutation $\sigma$ as a pattern if it contains a subsequence of length $|\sigma|$ whose elements are in the same relative order as in the permutation $\sigma$. This notion plays a major role in enumerative combinatorics. We prove that the problem does not have a polynomial kernel (under the widely believed complexity assumption $\mbox{NP} \not\subseteq \mbox{co-NP}/\mbox{poly}$) by introducing a new polynomial reduction from the clique problem to permutation pattern matching.
Databáze: arXiv