Kernelization lower bound for Permutation Pattern Matching
Autor: | Bliznets, Ivan, Cygan, Marek, Komosa, Pawel, Mach, Lukas |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | A permutation $\pi$ contains a permutation $\sigma$ as a pattern if it contains a subsequence of length $|\sigma|$ whose elements are in the same relative order as in the permutation $\sigma$. This notion plays a major role in enumerative combinatorics. We prove that the problem does not have a polynomial kernel (under the widely believed complexity assumption $\mbox{NP} \not\subseteq \mbox{co-NP}/\mbox{poly}$) by introducing a new polynomial reduction from the clique problem to permutation pattern matching. |
Databáze: | arXiv |
Externí odkaz: |