Diffusivities and kinetics of short-range and long-range orderings in Ni-Fe permalloys

Autor: Radchenko, T. M., Tatarenko, V. A., Bokoch, S. M.
Rok vydání: 2014
Předmět:
Zdroj: Metallofizika i Noveishie Tekhnologii, 28, No. 12: 1699-1720 (2006)
Druh dokumentu: Working Paper
Popis: The microscopic model of atomic diffusion is considered to describe the short-range order relaxation kinetics within the f.c.c.-Ni-Fe Permalloys. The model takes into account both the discrete and anisotropic characters of atomic jumps within the long-range field of concentration heterogeneities of the interacting atoms. The diffusion coefficients and activation energies for the disordered Ni-Fe permalloy are estimated with the evaluated probabilities of atomic jumps. As shown, the increasing of a temperature with a fixed composition influences on the 'potential' field of interatomic interaction ambiguously: the field 'potential' increases for defined coordination shells and decreases for some of other ones. Although the temperature increasing promotes the increasing of any atomic-probabilities jumps generally, but decreasing of the action of 'potential' field generated by the atoms of defined element and caused by its concentration heterogeneities onto the distant sites results in increasing of the atomic-jumps' probabilities of just this element, first of all, into the sites, which are more distant from the 'source' of heterogeneity. Within the framework of the static concentration waves' method along with the self-consistent field approximation, the Onsager-type kinetics equation is obtained to describe the long-range order relaxation by the L12-type superstructure. To calculate diffusivities for the ordered Ni3Fe permalloy, the independent, diffraction experimental data of the long-range order parameter relaxation are used. Theoretical curves of the long-range order time evolution for the non-stoichiometric f.c.c.-Ni-Fe permalloys are plotted. Decreasing of the concentration of alloying element results in decelerating of the long-range order parameter change and in increasing of its relaxation time.
Databáze: arXiv