Popis: |
We present a novel lossless universal source coding algorithm that uses parallel computational units to increase the throughput. The length-$N$ input sequence is partitioned into $B$ blocks. Processing each block independently of the other blocks can accelerate the computation by a factor of $B$, but degrades the compression quality. Instead, our approach is to first estimate the minimum description length (MDL) source underlying the entire input, and then encode each of the $B$ blocks in parallel based on the MDL source. With this two-pass approach, the compression loss incurred by using more parallel units is insignificant. Our algorithm is work-efficient, i.e., its computational complexity is $O(N/B)$. Its redundancy is approximately $B\log(N/B)$ bits above Rissanen's lower bound on universal coding performance, with respect to any tree source whose maximal depth is at most $\log(N/B)$. |