The Scaling Limit of Random Outerplanar Maps

Autor: Caraceni, Alessandra
Rok vydání: 2014
Předmět:
Druh dokumentu: Working Paper
Popis: A planar map is outerplanar if all its vertices belong to the same face. We show that random uniform outerplanar maps with $n$ vertices suitably rescaled by a factor $1/ \sqrt{n}$ converge in the Gromov-Hausdorff sense to $\displaystyle{\frac{7 \sqrt{2}}{9}}$ times Aldous' Brownian tree. The proof uses the bijection of Bonichon, Gavoille and Hanusse.
Comment: 25 pages
Databáze: arXiv
načítá se...