The Scaling Limit of Random Outerplanar Maps
Autor: | Caraceni, Alessandra |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | A planar map is outerplanar if all its vertices belong to the same face. We show that random uniform outerplanar maps with $n$ vertices suitably rescaled by a factor $1/ \sqrt{n}$ converge in the Gromov-Hausdorff sense to $\displaystyle{\frac{7 \sqrt{2}}{9}}$ times Aldous' Brownian tree. The proof uses the bijection of Bonichon, Gavoille and Hanusse. Comment: 25 pages |
Databáze: | arXiv |
Externí odkaz: |
načítá se...