Rudin's Submodules of $H^2(\mathbb{D}^2)$
Autor: | Das, B. K., Sarkar, Jaydeb |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $\{\alpha_n\}_{n\geq 0}$ be a sequence of scalars in the open unit disc of $\mathbb{C}$, and let $\{l_n\}_{n\geq 0}$ be a sequence of natural numbers satisfying $\sum_{n=0}^\infty (1 - l_n|\alpha_n|) <\infty$. Then the joint $(M_{z_1}, M_{z_2})$ invariant subspace \[\mathcal{S}_{\Phi} = \vee_{n=0}^\infty \Big( z_1^n \prod_{k=n}^\infty \left(\frac{-\bar{\alpha}_k}{|\alpha_k|} \frac{z_2 - \alpha_k}{1 - \bar{\alpha}_k z_2}\right)^{l_k} H^2(\mathbb{D}^2)\Big),\] is called a Rudin submodule. In this paper we analyze the class of Rudin submodules and prove that \[ \text{dim} (\mathcal{S}_{\Phi}\ominus (z_1 \mathcal{S}_{\Phi}+ z_2\mathcal{S}_{\Phi}))= 1+\#\{n\ge 0: \alpha_n=0\}<\infty. \]In particular, this answer a question earlier raised by Douglas and Yang (2000). Comment: 6 pages. Revised. To appear in C. R. Acad. Sci. Paris |
Databáze: | arXiv |
Externí odkaz: |