Minimal surfaces in finite volume non compact hyperbolic $3$-manifolds
Autor: | Collin, Pascal, Hauswirth, Laurent, Mazet, Laurent, Rosenberg, Harold |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove there exists a compact embedded minimal surface in a complete finite volume hyperbolic $3$-manifold $\mathcal{N}$. We also obtain a least area, incompressible, properly embedded, finite topology, $2$-sided surface. We prove a properly embedded minimal surface of bounded curvature has finite topology. This determines its asymptotic behavior. Some rigidity theorems are obtained. |
Databáze: | arXiv |
Externí odkaz: |