Finding Largest Rectangles in Convex Polygons
Autor: | Cabello, Sergio, Cheong, Otfried, Knauer, Christian, Schlipf, Lena |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We consider the following geometric optimization problem: find a maximum-area rectangle and a maximum-perimeter rectangle contained in a given convex polygon with $n$ vertices. We give exact algorithms that solve these problems in time $O(n^3)$. We also give $(1-\varepsilon)$-approximation algorithms that take time $O(\varepsilon^{-3/2}+ \varepsilon^{-1/2} \log n)$. Comment: The time bound to approximate the maximum-perimeter rectangle is improved. Christian Knauer becomes coauthor |
Databáze: | arXiv |
Externí odkaz: |