On quasiconformal equivalence between certain infinitely often punctured planes

Autor: Fujino, H.
Rok vydání: 2014
Předmět:
Druh dokumentu: Working Paper
Popis: A closed discrete subset $A\subset \mathbb{C}$ is called tame if $\mathbb{C}\setminus A$ is quasiconformally equivalent to $\mathbb{C}\setminus \mathbb{Z}$. By giving several criteria for $A$ to be tame, we shall show that $\mathbb{Z}+i\mathbb{Z}$ is not tame.
Comment: 10 pages, 3 EPS figures
Databáze: arXiv