On quasiconformal equivalence between certain infinitely often punctured planes
Autor: | Fujino, H. |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | A closed discrete subset $A\subset \mathbb{C}$ is called tame if $\mathbb{C}\setminus A$ is quasiconformally equivalent to $\mathbb{C}\setminus \mathbb{Z}$. By giving several criteria for $A$ to be tame, we shall show that $\mathbb{Z}+i\mathbb{Z}$ is not tame. Comment: 10 pages, 3 EPS figures |
Databáze: | arXiv |
Externí odkaz: |