Size versus truthfulness in the House Allocation problem

Autor: Krysta, Piotr, Manlove, David, Rastegari, Baharak, Zhang, Jinshan
Rok vydání: 2014
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1007/s00453-019-00584-7
Popis: We study the House Allocation problem (also known as the Assignment problem), i.e., the problem of allocating a set of objects among a set of agents, where each agent has ordinal preferences (possibly involving ties) over a subset of the objects. We focus on truthful mechanisms without monetary transfers for finding large Pareto optimal matchings. It is straightforward to show that no deterministic truthful mechanism can approximate a maximum cardinality Pareto optimal matching with ratio better than 2. We thus consider randomised mechanisms. We give a natural and explicit extension of the classical Random Serial Dictatorship Mechanism (RSDM) specifically for the House Allocation problem where preference lists can include ties. We thus obtain a universally truthful randomised mechanism for finding a Pareto optimal matching and show that it achieves an approximation ratio of $\frac{e}{e-1}$. The same bound holds even when agents have priorities (weights) and our goal is to find a maximum weight (as opposed to maximum cardinality) Pareto optimal matching. On the other hand we give a lower bound of $\frac{18}{13}$ on the approximation ratio of any universally truthful Pareto optimal mechanism in settings with strict preferences. In the case that the mechanism must additionally be non-bossy with an additional technical assumption, we show by utilising a result of Bade that an improved lower bound of $\frac{e}{e-1}$ holds. This lower bound is tight since RSDM for strict preference lists is non-bossy. We moreover interpret our problem in terms of the classical secretary problem and prove that our mechanism provides the best randomised strategy of the administrator who interviews the applicants.
Comment: To appear in Algorithmica (preliminary version appeared in the Proceedings of EC 2014)
Databáze: arXiv