Subfactor categories of triangulated categories
Autor: | Xu, Jinde, Zhou, Panyue, Ouyang, Baiyu |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let {\cal T} be a triangulated category, {\cal A} a full subcategory of {\cal T} and {\cal X} a functorially finite subcategory of {\cal A}. If {\cal A} has the properties that any {\cal X}-monomorphism of {\cal A} has a cone and any {\cal X}-epimorphism has a cocone. Then the subfactor category {\cal A/[X]} admits a pretriangulated structure in the sense of [BR]. Moreover the above pretriangulated category {\cal A/[X]} with ({\cal X},{\cal X}[1]) = 0 becomes a triangulated category if and only if ({\cal A},{\cal A}) forms an {\cal X}-mutation pair and {\cal A} is closed under extensions. Comment: 15 pages |
Databáze: | arXiv |
Externí odkaz: |