Antitonicity of the inverse for selfadjoint matrices, operators, and relations
Autor: | Behrndt, J., Hassi, S., de Snoo, H. S. V., Wietsma, H. L. |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $H_1$ and $H_2$ be selfadjoint operators or relations (multivalued operators) acting on a separable Hilbert space and assume that the inequality $H_1 \leq H_2$ holds. Then the validity of the inequalities $-H_1^{-1} \leq -H_2^{-1}$ and $H_2^{-1} \leq H_1^{-1}$ is characterized in terms of the inertia of $H_1$ and $H_2$. Such results are known for matrices and boundedly invertible operators. In the present paper those results are extended to selfadjoint, in general unbounded, not necessarily boundedly invertible, operators and, more generally, for selfadjoint relations in separable Hilbert spaces. Comment: To appear in Proc. Amer. Math. Soc.; 13 pages |
Databáze: | arXiv |
Externí odkaz: |