Graded polynomial identities and central polynomials of matrices over an infinite integral domain
Autor: | Fonseca, Luís Felipe Gonçalves |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s12215-014-0174-6 |
Popis: | Let $K$ be an infinite integral domain and $M_{n}(K)$ be the algebra of all $n\times n$ matrices over $K$. This paper aims for the following goals: Find a basis for the graded identities for elementary grading in $M_{n}(K)$ when the neutral component and diagonal coincide; Describe the $\mathbb{Z}_{p}$-graded central polynomials of $M_{p}(K)$ when $p$ is a prime number; Describe the $\mathbb{Z}$-graded central polynomials of $M_{n}(K)$. Comment: 16 pages. Submitted to RCMP |
Databáze: | arXiv |
Externí odkaz: |