Graded polynomial identities and central polynomials of matrices over an infinite integral domain

Autor: Fonseca, Luís Felipe Gonçalves
Rok vydání: 2014
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1007/s12215-014-0174-6
Popis: Let $K$ be an infinite integral domain and $M_{n}(K)$ be the algebra of all $n\times n$ matrices over $K$. This paper aims for the following goals: Find a basis for the graded identities for elementary grading in $M_{n}(K)$ when the neutral component and diagonal coincide; Describe the $\mathbb{Z}_{p}$-graded central polynomials of $M_{p}(K)$ when $p$ is a prime number; Describe the $\mathbb{Z}$-graded central polynomials of $M_{n}(K)$.
Comment: 16 pages. Submitted to RCMP
Databáze: arXiv