2n-Weak module amenability of semigroup algebras

Autor: Ghahramani, Hoger
Rok vydání: 2014
Předmět:
Zdroj: Journal of Linear and Topological Algebra (JLTA), 8 (3) (2019), 203-209
Druh dokumentu: Working Paper
Popis: Let $S$ be an inverse semigroup with the set of idempotents $E$. We prove that the semigroup algebra $\ell^{1}(S)$ is always $2n$-weakly module amenable as an $\ell^{1}(E)$-module, for any $n\in \mathbb{N}$, where $E$ acts on $S$ trivially from the left and by multiplication from the right.
Comment: arXiv admin note: text overlap with arXiv:1207.4514 by other authors
Databáze: arXiv