2n-Weak module amenability of semigroup algebras
Autor: | Ghahramani, Hoger |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | Journal of Linear and Topological Algebra (JLTA), 8 (3) (2019), 203-209 |
Druh dokumentu: | Working Paper |
Popis: | Let $S$ be an inverse semigroup with the set of idempotents $E$. We prove that the semigroup algebra $\ell^{1}(S)$ is always $2n$-weakly module amenable as an $\ell^{1}(E)$-module, for any $n\in \mathbb{N}$, where $E$ acts on $S$ trivially from the left and by multiplication from the right. Comment: arXiv admin note: text overlap with arXiv:1207.4514 by other authors |
Databáze: | arXiv |
Externí odkaz: |