Symmetric Tamm-Dancoff q-oscillator: representation, quasi-Fibonacci nature, accidental degeneracy and coherent states
Druh dokumentu: | Working Paper |
---|---|
DOI: | 10.1088/1751-8113/47/30/305304 |
Přístupová URL adresa: | http://arxiv.org/abs/1402.7241 |
Přírůstkové číslo: | edsarx.1402.7241 |
Autor: | Chung, Won Sang, Gavrilik, A. M., Kachurik, I. I., Rebesh, A. P. |
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | J. Phys. A: Math. Theor. 47 (2014) 305304 |
Druh dokumentu: | Working Paper |
DOI: | 10.1088/1751-8113/47/30/305304 |
Popis: | In this paper we propose a symmetric q-deformed Tamm-Dancoff (S-TD) oscillator algebra and study its representation, coordinate realization, and main properties. In particular, the non-Fibonacci (more exactly, quasi-Fibonacci) nature of S-TD oscillator is established, the possibility of relating it to certain p,q-deformed oscillator family shown, the occurrence of the pairwise accidental degeneracy proven. We also find the coherent state for the S-TD oscillator and show that it satisfies completeness relation. Main advantage of the S-TD model over usual Tamm-Dancoff oscillator is that due to (q<-->q^{-1})- symmetry it admits not only real, but also complex (phase-like) values of the deformation parameter q. Comment: 14 pages; v2: minor revision, references and paragraph in Conclusions added, accepted for publication in J.Phys.A |
Databáze: | arXiv |
Externí odkaz: |