Application of the nuclear equation of state obtained by the variational method to core-collapse supernovae
Autor: | Togashi, H., Takano, M., Sumiyoshi, K., Nakazato, K. |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | Prog. Theor. Exp. Phys. 2014, 023D05 |
Druh dokumentu: | Working Paper |
DOI: | 10.1093/ptep/ptu020 |
Popis: | The equation of state (EOS) for hot asymmetric nuclear matter which is constructed with the variational method starting from the Argonne v18 and Urbana IX nuclear forces is applied to spherically symmetric core-collapse supernovae (SNe). We first investigate the EOS of isentropic beta-stable SN matter, and find that the matter with the variational EOS is more neutron-rich than that with the Shen EOS. Using the variational EOS for uniform matter supplemented by the Shen EOS of non-uniform matter at low densities, we perform general-relativistic spherically symmetric simulations of core-collapse SNe with and without neutrino transfer, starting from a presupernova model of 15 solar mass. In the adiabatic simulation without neutrino transfer, the explosion is successful, and the explosion energy with the variational EOS is larger than that with the Shen EOS. In the case of the simulation with neutrino transfer, the shock wave stalls and then the explosion fails, as in other spherically symmetric simulations. The inner core with the variational EOS is more compact than that with the Shen EOS, due to the relative softness of the variational EOS. This implies that the variational EOS is more advantageous for SN explosions than the Shen EOS. Comment: 22 pages, 17 figures, typos corrected, final version published in PTEP |
Databáze: | arXiv |
Externí odkaz: |