A note on the arithmetic properties of Stern Polynomials
Autor: | Gawron, Maciej |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We investigate the Stern polynomials defined by $B_0 ( t ) =0,B_1 ( t ) =1$, and for $n \geq 2$ by the recurrence relations $B_{2n}( t) =tB_{n}( t) ,$ $B_{2n+1}( t) =B_n( t) +B_{n+1}( t) $. We prove that all possible rational roots of that polynomials are $0,-1,-1/2,-1/3$. We give complete characterization of $n$ such that $deg( B_n) = deg( B_{n+1}) $ and $deg( B_n) =deg( B_{n+1}) =deg( B_{n+2}) $. Moreover, we present some result concerning reciprocal Stern polynomials. Comment: 9 pages, submitted |
Databáze: | arXiv |
Externí odkaz: |