Galaxy Phase-Space Density Data Preclude that Bose-Einstein Condensate be the Total Dark Matter
Autor: | de Vega, Hector J., Sanchez, Norma G. |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | Universe 2022, 8, 419. https://www.mdpi.com/2218-1997/8/8/419 |
Druh dokumentu: | Working Paper |
DOI: | 10.3390/universe8080419 |
Popis: | Light scalars (as the axion) with mass m ~ 10^{-22} eV forming a Bose-Einstein condensate (BEC) exhibit a Jeans length in the kpc scale and were therefore proposed as dark matter (DM) candidates. Our treatment here is generic, independent of the particle physics model and applies to all DM BEC, in or out of equilibrium. Two observed quantities crucially constrain DM in an inescapable way: the average DM density rho_{DM} and the phase-space density Q. The observed values of rho_{DM} and Q in galaxies today constrain both the possibility to form a BEC and the DM mass m. These two constraints robustly exclude axion DM that decouples just after the QCD phase transition. Moreover, the value m ~ 10^{-22} eV can only be obtained with a number of ultrarelativistic degrees of freedom at decoupling in the trillions which is impossible for decoupling in the radiation dominated era. In addition, we find for the axion vacuum misalignment scenario that axions are produced strongly out of thermal equilibrium and that the axion mass in such scenario turns to be 17 orders of magnitude too large to reproduce the observed galactic structures. Moreover, we also consider inhomogenous gravitationally bounded BEC's supported by the bosonic quantum pressure independently of any particular particle physics scenario. For a typical size R ~ kpc and compact object masses M ~ 10^7 Msun they remarkably lead to the same particle mass m ~ 10^{-22} eV as the BEC free-streaming length. However, the phase-space density for the gravitationally bounded BEC's turns to be more than sixty orders of magnitude smaller than the galaxy observed values. We conclude that the BEC's and the axion cannot be the DM particle. However, an axion in the mili-eV scale may be a relevant source of dark energy through the zero point cosmological quantum fluctuations. Comment: 23 pages, no figures. Expanded, Updated and Published version |
Databáze: | arXiv |
Externí odkaz: |