Asymptotic Behavior of neural fields in an unbounded domain
Autor: | da Silva, Severino Horacio, Silva, Michel Barros |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we prove the existence of a compact global attractor for the flow generated by equation $$ \frac{\partial u}{\partial t}(x,t)+u(x,t)= \int_{\mathbb{R}^{N}}J(x-y)(f( u(y,t))dy+ h, \quad h > 0, \quad x\in \mathbb{R}^{N}, \quad t\in\mathbb{R}_{+} $$ in the weight space $L^{p}(\mathbb{R}^{N}, \rho)$. We also give uniform estimates on the size of the attractor and we exhibit a Lyapunov functional to the flow generated by this equation |
Databáze: | arXiv |
Externí odkaz: |