On everywhere divergence of the strong $\Phi$-means of Walsh-Fourier series
Autor: | Gát, G., Goginava, U., Karagulyan, G. |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | J. Math. Anal. Appl. 421 (2015), no. 1, 206-214 |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.jmaa.2014.07.016 |
Popis: | Almost everywhere strong exponential summability of Fourier series in Walsh and trigonometric systems established by Rodin in 1990. We prove, that if the growth of a function $\Phi(t):[0,\infty)\to[0,\infty)$ is bigger than the exponent, then the strong $\Phi$-summability of a Walsh-Fourier series can fail everywhere. The analogous theorem for trigonometric system was proved before by one of the author of this paper. Comment: 8 pages |
Databáze: | arXiv |
Externí odkaz: |