On everywhere divergence of the strong $\Phi$-means of Walsh-Fourier series

Autor: Gát, G., Goginava, U., Karagulyan, G.
Rok vydání: 2013
Předmět:
Zdroj: J. Math. Anal. Appl. 421 (2015), no. 1, 206-214
Druh dokumentu: Working Paper
DOI: 10.1016/j.jmaa.2014.07.016
Popis: Almost everywhere strong exponential summability of Fourier series in Walsh and trigonometric systems established by Rodin in 1990. We prove, that if the growth of a function $\Phi(t):[0,\infty)\to[0,\infty)$ is bigger than the exponent, then the strong $\Phi$-summability of a Walsh-Fourier series can fail everywhere. The analogous theorem for trigonometric system was proved before by one of the author of this paper.
Comment: 8 pages
Databáze: arXiv