Bootstrap Percolation on Periodic Trees

Autor: Bradonjić, Milan, Saniee, Iraj
Rok vydání: 2013
Předmět:
Druh dokumentu: Working Paper
Popis: We study bootstrap percolation with the threshold parameter $\theta \geq 2$ and the initial probability $p$ on infinite periodic trees that are defined as follows. Each node of a tree has degree selected from a finite predefined set of non-negative integers and starting from any node, all nodes at the same graph distance from it have the same degree. We show the existence of the critical threshold $p_f(\theta) \in (0,1)$ such that with high probability, (i) if $p > p_f(\theta)$ then the periodic tree becomes fully active, while (ii) if $p < p_f(\theta)$ then a periodic tree does not become fully active. We also derive a system of recurrence equations for the critical threshold $p_f(\theta)$ and compute these numerically for a collection of periodic trees and various values of $\theta$, thus extending previous results for regular (homogeneous) trees.
Databáze: arXiv