From the Weyl quantization of a particle on the circle to number-phase Wigner functions

Autor: Przanowski, Maciej, Brzykcy, Przemyslaw, Tosiek, Jaromir
Rok vydání: 2013
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1016/j.aop.2014.10.011
Popis: A generalized Weyl quantization formalism for a particle on the circle investigated in \cite{1} is developed. A Wigner function for the state $\hat{\varrho}$ and the kernel $\mathcal{K}$ for a particle on the circle is defined and its properties are analyzed. Then it is shown how this Wigner function can be easily modified to give the number-phase Wigner function in quantum optics. Some examples of such number-phase Wigner function are considered.
Comment: 22 pages, 6 figures
Databáze: arXiv