Recovering functions from the Paley-Wiener amalgam space
Autor: | Ledford, Jeff |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper we show that functions from the Paley-Wiener amalgam space $(PW,l^1)=\{f\in L^2(\mathbb{R}): \sum\|\hat{f}(\xi+2\pi m) \|_{L^2([-\pi,\pi])} < \infty\}$ enjoy similar recovery properties as the classical Paley-Wiener space. Specifically, if $\{\phi_\alpha(x): \alpha\in A\}$ is a regular family of interpolators and $\{x_n: n\in \mathbb{Z}\}$ is a complete interpolating sequence for $L^2([-\pi,\pi])$, then the family $\{ e^{2\pi i m x}\phi_{\alpha}(x-x_n): m,n\in \mathbb{Z}, \alpha\in A \} $ may be used to recover $f\in(PW,l^1)$. Comment: 5 pages |
Databáze: | arXiv |
Externí odkaz: |