$R$-transforms for Sobolev $H^2$-metrics on spaces of plane curves
Autor: | Bauer, Martin, Bruveris, Martins, Michor, Peter W. |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | Geometry, Imaging and Computing, Volume 1, Number 1, 1-56, 2014 |
Druh dokumentu: | Working Paper |
DOI: | 10.4310/GIC.2014.v1.n1.a1 |
Popis: | We consider spaces of smooth immersed plane curves (modulo translations and/or rotations), equipped with reparameterization invariant weak Riemannian metrics involving second derivatives. This includes the full $H^2$-metric without zero order terms. We find isometries (called $R$-transforms) from some of these spaces into function spaces with simpler weak Riemannian metrics, and we use this to give explicit formulas for geodesics, geodesic distances, and sectional curvatures. We also show how to utilise the isometries to compute geodesics numerically. Comment: 40 pages, 3 figures |
Databáze: | arXiv |
Externí odkaz: |