Multifractal Analysis of functions on Heisenberg and Carnot Groups
Autor: | Seuret, Stéphane, Vigneron, François |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1017/S1474748015000092 |
Popis: | In this article, we investigate the pointwise behaviors of functions on the Heisenberg group. We find wavelet characterizations for the global and local H\"older exponents. Then we prove some a priori upper bounds for the multifractal spectrum of all functions in a given H\"older, Sobolev or Besov space. These upper bounds turn out to be optimal, since in all cases they are reached by typical functions in the corresponding functional spaces. We also explain how to adapt our proof to extend our results to Carnot groups. Comment: 35 pages, 4 figures |
Databáze: | arXiv |
Externí odkaz: |