Almost Everywhere Strong Summability of Double Walsh-Fourier Series

Autor: Gát, G., Goginava, U.
Rok vydání: 2013
Předmět:
Druh dokumentu: Working Paper
Popis: In this paper we study the a. e. strong convergence of the quadratical partial sums of the two-dimensional Walsh-Fourier series. Namely, we prove the a.e. relation $(\frac{1}{n}\sum\limits_{m=0}^{n-1}\left\vert S_{mm}f - f \right\vert^{p})^{1/p}\rightarrow 0$ for every two-dimensional functions belonging to $L\log L$ and $0
Databáze: arXiv