Almost Everywhere Strong Summability of Double Walsh-Fourier Series
Autor: | Gát, G., Goginava, U. |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper we study the a. e. strong convergence of the quadratical partial sums of the two-dimensional Walsh-Fourier series. Namely, we prove the a.e. relation $(\frac{1}{n}\sum\limits_{m=0}^{n-1}\left\vert S_{mm}f - f \right\vert^{p})^{1/p}\rightarrow 0$ for every two-dimensional functions belonging to $L\log L$ and $0
|
Databáze: | arXiv |
Externí odkaz: |