Nonlinear Boundary Value Problems via Minimization on Orlicz-Sobolev Spaces
Autor: | Goncalves, J. V., Carvalho, M. L. M. |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We develop arguments on convexity and minimization of energy functionals on Orlicz-Sobolev spaces to investigate existence of solution to the equation $\displaystyle -\mbox{div} (\phi(|\nabla u|) \nabla u) = f(x,u) + h \mbox{in} \Omega$ under Dirichlet boundary conditions, where $\Omega \subset {\bf R}^{N}$ is a bounded smooth domain, $\phi : (0,\infty)\longrightarrow (0,\infty)$ is a suitable continuous function and $f: \Omega \times {\bf R} \to {\bf R}$ satisfies the Carath\'eodory conditions, while $h$ is a measure. Comment: 14 pagex |
Databáze: | arXiv |
Externí odkaz: |