Regularity of minimizers of autonomous convex variational integrals
Autor: | Carozza, Menita, Kristensen, Jan, di Napoli, Antonia Passarelli |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | Ann.Sc.Norm.Super.Pisa Cl. Sci. (5) 13 (2014), no.4, 1065-1089 |
Druh dokumentu: | Working Paper |
DOI: | 10.2422/2036-2145.201208_005 |
Popis: | We establish local higher integrability and differentiability results for minimizers of variational integrals $$ \mathfrak{F}(v,\Omega) = \int_{\Omega} /! F(Dv(x)) \, dx $$ over $W^{1,p}$--Sobolev mappings $u \colon \Omega \subset {\mathbb R}^n \to {\mathbb R}^N$ satisfying a Dirichlet boundary condition. The integrands $F$ are assumed to be autonomous, convex and of $(p,q)$ growth, but are otherwise not subjected to any further structure conditions, and we consider exponents in the range $1
|
Databáze: | arXiv |
Externí odkaz: |