Concurrent learning-based online approximate feedback-Nash equilibrium solution of N-player nonzero-sum differential games

Autor: Kamalapurkar, Rushikesh, Klotz, Justin, Dixon, Warren E.
Rok vydání: 2013
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1109/JAS.2014.7004681
Popis: This paper presents a concurrent learning-based actor-critic-identifier architecture to obtain an approximate feedback-Nash equilibrium solution to an infinite horizon N-player nonzero-sum differential game online, without requiring persistence of excitation (PE), for a nonlinear control-affine system. Under a condition milder than PE, uniformly ultimately bounded convergence of the developed control policies to the feedback-Nash equilibrium policies is established.
Databáze: arXiv