Concurrent learning-based online approximate feedback-Nash equilibrium solution of N-player nonzero-sum differential games
Autor: | Kamalapurkar, Rushikesh, Klotz, Justin, Dixon, Warren E. |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1109/JAS.2014.7004681 |
Popis: | This paper presents a concurrent learning-based actor-critic-identifier architecture to obtain an approximate feedback-Nash equilibrium solution to an infinite horizon N-player nonzero-sum differential game online, without requiring persistence of excitation (PE), for a nonlinear control-affine system. Under a condition milder than PE, uniformly ultimately bounded convergence of the developed control policies to the feedback-Nash equilibrium policies is established. |
Databáze: | arXiv |
Externí odkaz: |