Local deformation rings and a Breuil-M\'{e}zard conjecture when l\neq p
Autor: | Shotton, Jack |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | Algebra Number Theory 10 (2016) 1437-1475 |
Druh dokumentu: | Working Paper |
DOI: | 10.2140/ant.2016.10.1437 |
Popis: | We compute the deformation rings of two dimensional mod l representations of Gal(Fbar/F) with fixed inertial type, for l an odd prime, p a prime distinct from p and F/Q_p a finite extension. We show that in this setting (when p is also odd) an analogue of the Breuil-M\'{e}zard conjecture holds, relating the special fibres of these deformation rings to the mod l reduction of certain irreducible representations of GL_2(O_F). Comment: 35 pages. Proof of Proposition 2.7 in published version is incorrect, but the proposition is correct. An erratum is included here |
Databáze: | arXiv |
Externí odkaz: |