A doubling subset of $L_p$ for $p>2$ that is inherently infinite dimensional

Autor: Lafforgue, Vincent, Naor, Assaf
Rok vydání: 2013
Předmět:
Druh dokumentu: Working Paper
Popis: It is shown that for every $p\in (2,\infty)$ there exists a doubling subset of $L_p$ that does not admit a bi-Lipschitz embedding into $\R^k$ for any $k\in \N$.
Databáze: arXiv