A doubling subset of $L_p$ for $p>2$ that is inherently infinite dimensional
Autor: | Lafforgue, Vincent, Naor, Assaf |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | It is shown that for every $p\in (2,\infty)$ there exists a doubling subset of $L_p$ that does not admit a bi-Lipschitz embedding into $\R^k$ for any $k\in \N$. |
Databáze: | arXiv |
Externí odkaz: |