Breather solutions of the discrete p-Schr\'odinger equation
Druh dokumentu: | Working Paper |
---|---|
DOI: | 10.1007/978-3-319-02057-0_4 |
Přístupová URL adresa: | http://arxiv.org/abs/1307.8324 |
Přírůstkové číslo: | edsarx.1307.8324 |
Autor: | James, Guillaume, Starosvetsky, Yuli |
Rok vydání: | 2013 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/978-3-319-02057-0_4 |
Popis: | We consider the discrete p-Schr\"odinger (DpS) equation, which approximates small amplitude oscillations in chains of oscillators with fully-nonlinear nearest-neighbors interactions of order alpha = p-1 >1. Using a mapping approach, we prove the existence of breather solutions of the DpS equation with even- or odd-parity reflectional symmetries. We derive in addition analytical approximations for the breather profiles and the corresponding intersecting stable and unstable manifolds, valid on a whole range of nonlinearity orders alpha. In the limit of weak nonlinearity (alpha --> 1^+), we introduce a continuum limit connecting the stationary DpS and logarithmic nonlinear Schr\"odinger equations. In this limit, breathers correspond asymptotically to Gaussian homoclinic solutions. We numerically analyze the stability properties of breather solutions depending on their even- or odd-parity symmetry. A perturbation of an unstable breather generally results in a translational motion (traveling breather) when alpha is close to unity, whereas pinning becomes predominant for larger values of alpha. Comment: To appear in Springer Series on Wave Phenomena |
Databáze: | arXiv |
Externí odkaz: |