Refined Error Estimates for the Riccati Equation with Applications to the Angular Teukolsky Equation

Autor: Finster, Felix, Smoller, Joel
Rok vydání: 2013
Předmět:
Zdroj: Methods and Applications of Analysis 22 (2015) 67-100
Druh dokumentu: Working Paper
DOI: 10.4310/MAA.2015.v22.n1.a3
Popis: We derive refined rigorous error estimates for approximate solutions of Sturm-Liouville and Riccati equations with real or complex potentials. The approximate solutions include WKB approximations, Airy and parabolic cylinder functions, and certain Bessel functions. Our estimates are applied to solutions of the angular Teukolsky equation with a complex aspherical parameter in a rotating black hole Kerr geometry.
Comment: 34 pages, LaTeX, 4 figures, 4 ancillary files, minor corrections (published version)
Databáze: arXiv