On a common generalization of Shelah's 2-rank, dp-rank, and o-minimal dimension
Autor: | Guingona, Vincent, Hill, Cameron Donnay |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we build a dimension theory related to Shelah's 2-rank, dp-rank, and o-minimal dimension. We call this dimension op-dimension. We exhibit the notion of the n-multi-order property, generalizing the order property, and use this to create op-rank, which generalizes 2-rank. From this we build op-dimension. We show that op-dimension bounds dp-rank, that op-dimension is sub-additive, and op-dimension generalizes o-minimal dimension in o-minimal theories. Comment: 30 pages |
Databáze: | arXiv |
Externí odkaz: |