Trace ideal criteria for embeddings and composition operators on model spaces

Autor: Aleman, A., Lyubarskii, Yu., Malinnikova, E., Perfekt, K. -M.
Rok vydání: 2013
Předmět:
Zdroj: J. Funct. Anal. 270 (2016), no. 3, 861-883
Druh dokumentu: Working Paper
DOI: 10.1016/j.jfa.2015.11.006
Popis: Let $K_\theta$ be a model space generated by an inner function $\theta$. We study the Schatten class membership of embeddings $I : K_\theta \to L^2(\mu)$, $\mu$ a positive measure, and of composition operators $C_\phi:K_\theta\to H^2(\mathbb D)$ with a holomprphic function $\phi:\mathbb D\rightarrow \mathbb D$. In the case of one-component inner functions $\theta$ we show that the problem can be reduced to the study of natural extensions of $I$ and $C_\phi$ to the Hardy-Smirnov space $E^2(D)$ in some domain $D\supset \mathbb D$. In particular, we obtain a characterization of Schatten membership of $C_\phi$ in terms of Nevanlinna counting function. By example this characterization does not hold true for general $\phi$.
Comment: 20 pages
Databáze: arXiv