Quaternionic Fourier-Mellin Transform
Autor: | Hitzer, Eckhard |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | in T. Sugawa (ed.), Proc. of the The 19th Int. Conf. on Finite or Infinite Dim. Complex Analysis and Appl. (ICFIDCAA), 11-15 December 2011, Hiroshima, Japan, Tohoku Univ. Press, Sendai (2013), pp. ii, 123-131 |
Druh dokumentu: | Working Paper |
Popis: | In this contribution we generalize the classical Fourier Mellin transform [S. Dorrode and F. Ghorbel, Robust and efficient Fourier-Mellin transform approximations for gray-level image reconstruction and complete invariant description, Computer Vision and Image Understanding, 83(1) (2001), 57-78, DOI 10.1006/cviu.2001.0922.], which transforms functions $f$ representing, e.g., a gray level image defined over a compact set of $\mathbb{R}^2$. The quaternionic Fourier Mellin transform (QFMT) applies to functions $f: \mathbb{R}^2 \rightarrow \mathbb{H}$, for which $|f|$ is summable over $\mathbb{R}_+^* \times \mathbb{S}^1$ under the measure $d\theta \frac{dr}{r}$. $\mathbb{R}_+^*$ is the multiplicative group of positive and non-zero real numbers. We investigate the properties of the QFMT similar to the investigation of the quaternionic Fourier Transform (QFT) in [E. Hitzer, Quaternion Fourier Transform on Quaternion Fields and Generalizations, Advances in Applied Clifford Algebras, 17(3) (2007), 497-517.; E. Hitzer, Directional Uncertainty Principle for Quaternion Fourier Transforms, Advances in Applied Clifford Algebras, 20(2) (2010), 271-284, online since 08 July 2009.]. Comment: 11 pages, 9 figures |
Databáze: | arXiv |
Externí odkaz: |