Pathwise versions of the Burkholder-Davis-Gundy inequality

Autor: Beiglböck, Mathias, Siorpaes, Pietro
Rok vydání: 2013
Předmět:
Zdroj: Bernoulli 2015, Vol. 21, No. 1, 360-373
Druh dokumentu: Working Paper
DOI: 10.3150/13-BEJ570
Popis: We present a new proof of the Burkholder-Davis-Gundy inequalities for $1\leq p<\infty$. The novelty of our method is that these martingale inequalities are obtained as consequences of elementary deterministic counterparts. The latter have a natural interpretation in terms of robust hedging.
Comment: Published at http://dx.doi.org/10.3150/13-BEJ570 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm)
Databáze: arXiv