The forbidden number of a knot
Autor: | Crans, Alissa, Ganzell, Sandy, Mellor, Blake |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | Kyungpook Math. J., vol. 55, 2015, pp. 485-506 |
Druh dokumentu: | Working Paper |
Popis: | Every classical or virtual knot is equivalent to the unknot via a sequence of extended Reidemeister moves and the so-called forbidden moves. The minimum number of forbidden moves necessary to unknot a given knot is an invariant we call the {\it forbidden number}. We relate the forbidden number to several known invariants, and calculate bounds for some classes of virtual knots. Comment: 14 pages, many figures; v2 improves the upper bounds from the crossing number, and adds more detail to the data presented in the conclusion |
Databáze: | arXiv |
Externí odkaz: |