The forbidden number of a knot

Autor: Crans, Alissa, Ganzell, Sandy, Mellor, Blake
Rok vydání: 2013
Předmět:
Zdroj: Kyungpook Math. J., vol. 55, 2015, pp. 485-506
Druh dokumentu: Working Paper
Popis: Every classical or virtual knot is equivalent to the unknot via a sequence of extended Reidemeister moves and the so-called forbidden moves. The minimum number of forbidden moves necessary to unknot a given knot is an invariant we call the {\it forbidden number}. We relate the forbidden number to several known invariants, and calculate bounds for some classes of virtual knots.
Comment: 14 pages, many figures; v2 improves the upper bounds from the crossing number, and adds more detail to the data presented in the conclusion
Databáze: arXiv