A bound for the Milnor number of plane curve singularities
Autor: | Płoski, Arkadiusz |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $f=0$ be a plane algebraic curve of degree $d>1$ with an isolated singular point at the origin of the complex plane. We show that the Milnor number $\mu_0(f)$ is less than or equal to $(d-1)^2-\left[\frac{d}{2}\right]$, unless $f=0$ is a set of $d$ concurrent lines passing through 0. Then we characterize the curves $f=0$ for which $\mu_0(f)=(d-1)^2-\left[\frac{d}{2}\right]$. |
Databáze: | arXiv |
Externí odkaz: |